

Systems & Infrastructure as Code

"Ever tried. Ever failed.
No matter. Try Again.

Fail again. Fail better."
- Samuel Beckett

Processing this presentation

● If you were not able to attend Penguicon 2017,
this presentation has been exported with the
notes.

● You will see duplicate slides after the license
slide, but the duplicate slides contain my notes.

About Me

● Married, two cats
● Lifelong Type 1 Diabetic
● Michigan Native
● Systems Administrator && Programmer
● Ability to reach things on top of the refrigerator
● Very amateur woodworker
● Maintainer of vim-hashicorp-tools

philporada@gmail.com && https://keybase.io/pgporada

mailto:philporada@gmail.com
https://keybase.io/pgporada
mailto:philporada@gmail.com
https://keybase.io/pgporada

Why?

● Be the admin you needed when you were
younger

● Seeing config management helps to
troubleshoot problems because you aren’t
starting from scratch

The Gist

➔ OODA Loop
➔ Planning
➔ Developing
➔ Deploying
➔ Promoting
➔ Documenting
➔ Backups and Restores
➔ Testing
➔ Demo
➔ Questions

OODA Loop pt1

● Observe
● Orient
● Decide
● Act

OODA Loop pt2

Planning

● Listen to your team
● Note the skills of your team
● Ask questions
● Research potential technology
● Check mailing lists, reddit, IRC, etc
● Notepad/napkin sketches
● Visio, Cloudcraft.co, Lucid Charts, Gliffy, etc
● Get feedback

Planning – Visualize your system

Developing Infrastructure - Servers

● Phase 1
– Vagrant via virtualbox or libvirt

– Containers

– Free and fast

● Phase 2
– If you can do it in the cloud – AWS/GCE/Azure

– If you have spare physical gear – great

– Costly, but more of a “true” environment

Developing Infrastructure – Networks

● Phase 1
– GNS3, a little wonky but can load networking

images from multiple vendors ¯_(ツ)_/¯

– Packet Tracer for Cisco

● Phase 2
– Spare physical gear

Testing – Trust but verify

● How do you know your code is doing what you
think it’s doing?

● How do others know that your code is doing
what you think it’s doing?

● How do you know that others code is doing
what they say it’s doing?

● Allows managing confidence levels via code

Testing pt2 – Testing is hard

More Testing

Testing – How I do it

● Packer runs some ServerSpec tests after building the base image to ensure certain
aspects have been configured and are as the configuration management defined

● https://github.com/pgporada/packer-centos7-devenvironment

● Test-kitchen and BATS allow you to run tests locally before pushing your changes back
upstream to your team.

● https://github.com/pgporada/ansible-role-terraform
● https://github.com/pgporada/ansible-role-cve

● Terraform to spin up infrastructure in AWS/GCE/OpenStack/vSphere/etc
● https://github.com/pgporada/terraform-bastion Please note that this project won’t work

verbatim for you. I used terraform as a way to teach myself how Amazon is put together
and how all their little pieces interact. This project uses user_data to run private ansible
code to post-provision a server for me upon boot.

https://github.com/pgporada/packer-centos7-devenvironment
https://github.com/pgporada/ansible-role-terraform
https://github.com/pgporada/ansible-role-cve
https://github.com/pgporada/terraform-bastion
https://github.com/pgporada/packer-centos7-devenvironment
https://github.com/pgporada/ansible-role-terraform
https://github.com/pgporada/ansible-role-cve
https://github.com/pgporada/terraform-bastion

Deploying

● Are the instructions documented?
– If not, why?

● Is automation in place to do the deploy?
– If not, why?

● Do deploys happen from employee machines or
from a centralized deploy server?

Promoting code

● What are your
procedure/processes/instructions to promote
code from dev → staging → prod?

● You have a staging/test environment… right?

● You have a rollback strategy...right?

Documenting

● Helps train future engineers
● Always able to refer back to it
● Can link to it via alerts/monitoring panes
● Searchable if you take time to add labels/keys
● Allows you to pass tools to teammates who may not

have experience with that tool
● There’s only one of you. Let it be a force multiplier.
● Leave docs better than when you found them

Documenting – Don’t be an ass

Documentation – Help each other!

Documentation – We’re still here?

● Document to automate because the
documentation will eventually be disposed

● You can’t automate something you’ve never
done manually

● Don’t be this Homer

Backups and Restores

● Backups are important
● Restores are infinitely more important
● Is your backup and restore process automated?

– If not, why?

● What’s your mean time to recovery for
problems?

● Is your backup/restore code versioned so that it
can be iterated upon?

Live Demo

Questions?

● philporada@gmail.com

● https://github.com/pgporada

● https://keybase.io/pgporada

mailto:philporada@gmail.com
https://github.com/pgporada
https://keybase.io/pgporada
mailto:philporada@gmail.com
https://github.com/pgporada
https://keybase.io/pgporada

License

●

● This work is licensed under a Creative
Commons Attribution 4.0 International License.

● https://creativecommons.org/licenses/by/4.0/

Systems & Infrastructure as Code

"Ever tried. Ever failed.
No matter. Try Again.

Fail again. Fail better."
- Samuel Beckett

Samuel Beckett is a French badass

ASCII marionette by RetroJunkie Ascii ART page

Processing this presentation

● If you were not able to attend Penguicon 2017,
this presentation has been exported with the
notes.

● You will see duplicate slides after the license
slide, but the duplicate slides contain my notes.

About Me

● Married, two cats
● Lifelong Type 1 Diabetic
● Michigan Native
● Systems Administrator && Programmer
● Ability to reach things on top of the refrigerator
● Very amateur woodworker
● Maintainer of vim-hashicorp-tools

philporada@gmail.com && https://keybase.io/pgporada

It’s me!

Why?

● Be the admin you needed when you were
younger

● Seeing config management helps to
troubleshoot problems because you aren’t
starting from scratch

● When we were junior engineers we would always
look up to the senior engineers and wonder how
they did the things they did.

● We can help the next generation of engineers by
providing them with better docs, better code, better
processes/procedures/instructions

● New skills and technology will keep YOU learning.

● Don’t ever stop learning

The Gist

➔ OODA Loop
➔ Planning
➔ Developing
➔ Deploying
➔ Promoting
➔ Documenting
➔ Backups and Restores
➔ Testing
➔ Demo
➔ Questions

Don’t take this list verbatim

Acquired this image from Google Images

OODA Loop pt1

● Observe
● Orient
● Decide
● Act

John Boyd – military strategist

We do these steps continuously just by existing.

Monitoring and alerting help us to observe and orient
so that we can decide on the path to take.

It is a completely valid thought to decide to wait for an
alert to fire multiple times before acting upon that
alert.

OODA Loop pt2

This is the real OODA loop with all the subtleties

Planning

● Listen to your team
● Note the skills of your team
● Ask questions
● Research potential technology
● Check mailing lists, reddit, IRC, etc
● Notepad/napkin sketches
● Visio, Cloudcraft.co, Lucid Charts, Gliffy, etc
● Get feedback

Kung Fu tv show - “I seek not to know the answers, but
to understand the questions”

Planning – Visualize your system

Cloudcraft.co network diagram

Very old and since restructured home network

NSA PRISM napkin sketch

Developing Infrastructure - Servers

● Phase 1
– Vagrant via virtualbox or libvirt

– Containers
– Free and fast

● Phase 2
– If you can do it in the cloud – AWS/GCE/Azure
– If you have spare physical gear – great

– Costly, but more of a “true” environment

Developing Infrastructure – Networks

● Phase 1
– GNS3, a little wonky but can load networking

images from multiple vendors ¯_(ツ)_/¯

– Packet Tracer for Cisco

● Phase 2
– Spare physical gear

Back up your network configs
- Rancid
- Git
- Svn (ew)

Just do it, ok

Testing – Trust but verify

● How do you know your code is doing what you
think it’s doing?

● How do others know that your code is doing
what you think it’s doing?

● How do you know that others code is doing
what they say it’s doing?

● Allows managing confidence levels via code

Kitchen comes from the Chef world, but is useful to
test all configuration management codebases.

Pytest is a framework for writing tests in Python.
Alternatives to that are writing tests in Ruby via
Serverspec/InSpec or writing tests in Bash via the
Bash Automated Test Suite aka BATS

The test language doesn’t matter, having tests is what
matters. I am a programmer that uses ruby tools to
test python tools with bash. Does it work? Yes. Will
you do it the same way? Maybe. Does it matter that
you’re doing it? Absolutely.

Testing pt2 – Testing is hard

Stop prayer based development

Failing tests are ok on a developer (sysadmins)
machine because failure is how you get better and
learn

The faster you fail, the faster you fix problems

More Testing

Don’t be Dwight Schrute or this little girl.

Be like Darth Vader

Testing – How I do it

● Packer runs some ServerSpec tests after building the base image to ensure certain
aspects have been configured and are as the configuration management defined

● https://github.com/pgporada/packer-centos7-devenvironment

● Test-kitchen and BATS allow you to run tests locally before pushing your changes back
upstream to your team.

● https://github.com/pgporada/ansible-role-terraform
● https://github.com/pgporada/ansible-role-cve

● Terraform to spin up infrastructure in AWS/GCE/OpenStack/vSphere/etc
● https://github.com/pgporada/terraform-bastion Please note that this project won’t work

verbatim for you. I used terraform as a way to teach myself how Amazon is put together
and how all their little pieces interact. This project uses user_data to run private ansible
code to post-provision a server for me upon boot.

Deploying

● Are the instructions documented?
– If not, why?

● Is automation in place to do the deploy?
– If not, why?

● Do deploys happen from employee machines or
from a centralized deploy server?

Please don’t sue me Fox.

Promoting code

● What are your
procedure/processes/instructions to promote
code from dev → staging → prod?

● You have a staging/test environment… right?

● You have a rollback strategy...right?

Documenting

● Helps train future engineers
● Always able to refer back to it
● Can link to it via alerts/monitoring panes
● Searchable if you take time to add labels/keys
● Allows you to pass tools to teammates who may not

have experience with that tool
● There’s only one of you. Let it be a force multiplier.
● Leave docs better than when you found them

Pic is the Adepticus Mechanicus from WH40k and a
meme from the Hyperbole and a Half comic

Documenting – Don’t be an ass

Last edited fucking forever ago

A page with no content just like a company with no
employees

What’s a wiki? ...

Documentation – Help each other!

Space name is relevant to what a person would find
inside

The page is relevant to this year or has an edit trail.
Don’t leave docs with 1 entry to just fester. Clean that
stuff up.

Use of headers

Actual commands to run and links to other
documentation

Documentation – We’re still here?

● Document to automate because the
documentation will eventually be disposed

● You can’t automate something you’ve never
done manually

● Don’t be this Homer

Backups and Restores

● Backups are important
● Restores are infinitely more important
● Is your backup and restore process automated?

– If not, why?

● What’s your mean time to recovery for
problems?

● Is your backup/restore code versioned so that it
can be iterated upon?

Cron + tar + gzip + rsync

Tarsnap

rdiffbackup

Amanda

Bacula because Bareos had the main developer leave

Live Demo

Packer to build an image that we can deploy in Vagrant
and also an AMI that we can deploy in AWS

Git + Test-kitchen + Vagrant + Ansible
→ Run converge
→ Run tests

Git + Terraform + Ansible
→ Run a plan
→ Run apply
→ Run destroy then apply

Jenkins push button deploy + Slack message for alerts
of when deploys start/finish

Questions?

● philporada@gmail.com

● https://github.com/pgporada

● https://keybase.io/pgporada

My wife and I carved this pumpkin some Halloweens
ago

License

●

● This work is licensed under a Creative
Commons Attribution 4.0 International License.

● https://creativecommons.org/licenses/by/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

